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The dependence of the characteristics of vibrofluidization on the coefficients of 
hydraulic resistance of the bed and the grid and on a steady pressure drop (or gas 
flow) imposed from outside is analyzed. 

It is known that in the process of vibrofluidization of granular beds an important role 
is played by the hydrodynamic interaction of the particles with the gas stream which pene- 
trates the bed in the flight phase and retards its motion [1-5]. This interaction, whose 
influence is especially noticeable for finely dispersed beds, determines to a considerable 
extent the observed 'kinematic and dynamic parameters of a vibrofluidized bed (tossing height, 
effective expansion, phase angles of maximum tossing and falling of the bed on the grid, pres- 
sure pulsations in the bed, etc.). 

Because of the very strong dependence of the hydrodynamic force on the porosity of the 
bed, in particular, its average value for the relatively dense bed which is rising relative 
to the grid is considerably greater than that for the falling bed which is able to expand. 
As a result, the time-averaged pressure drop in the bed proves to be different from zero; in 
the case when the vibrating grid is permeable, this leads to the appearance of a pumping ef- 
fect in the bed [6-8]. Analogous phenomena result from the decrease in the hydraulic re- 
sistance of a granular bed to ascending flow and the increase in the resistance to descending 
gas flow upon the application of sufficiently intense vibrations (see [2, 5], as well as [9, 
i0] ). 

Other conditions being equal, the magnitude of the force of hydrodynamic interaction is 
determined by the effective velocity of gas filtration in the bed, which in turn depends on 
the pressure drop in it, i.e., on the pressure at the level of the grid when the pressure in 
the space above the bed is fixed. The pressure at the level of the grid obviously depends 
not only on the dynamic properties of the bed itself and the parameters of the vibrations but 
also on the conditions of penetration of gas into the bed from below, from the space below 
the grid. Hence, the physical nature of the very strong influence which the hydraulic re- 
sistance of the grid and the pressure created below it are able to exert on the characteris- 
tics of the vlbrofluidization becomes understandable. 

Such an influence is studied below on the basis of the physical model proposed in [ii] 
for a horizontal granular bed on a grid vibrating in the vertical direction with an amplitude 
A and a frequency m; the laboratory coordinate of the grid is xo = A sin mt. The bed is as- 
sumed to be shallow, in the sense that the influence of wall friction and of the processes 
of propagation of stress waves in it is small, while the mode of vibrofluidization is mild, 
so that the bed is able to settle entirely onto the grid by the moment of the next separation 
and the collision of layers of granular material in flight does not occur. For simplicity 
we assume, as in [ii], that the bed expands uniformly during the flight phase. This approxi- 
mation allows us to avoid the laborious analysis of the propagation of porosity waves through 
the bed and is not very important (either in a qualitative or a quantitative respect) in a 
study of the motion of the bed and the pulsating pressure drop in it, but it becomes very 
rough in an analysis of phenomena whose very origin is connected with the process of expan- 
sion of the bed. Thus, the equations obtained below for the average pressure drop and gas 
flow due to the pumping effect must be considered as order-of-magnltude equations; this does 
not affect the qualitative aspect of the matter, however. We assume that the relative expan- 
sion of the bed is small. As follows from [ii], for this the inequality A/h0 << I, which im- 
poses a lower limit of 2ho on the bed height, must be satisfied. The motion of the bed is 
studied in a one-dlmensional statement. 
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Fig. I. Dependence of T, (a) and ~m ( b )  on v' 
for differentk' (numbers on curves). 

To simplify the calculations, we assume that the hydraulic resistances of the bed and 
the grid are linear with respect to the gas filtration velocity. Then, taking the pressure 
in the space above the bed as the zero pressure reading and assuming that the pressure Po be- 
low the grid (which can be either positive or negative) is fixed, we write 

p = K,Q, P o - - P  = Kaq, K, = 2~p0Kd,~, K = K(p0), (1) 

where q is the gas flow relative to the center of gravity of the bed while q is the gas flow 
through the grid (a plus sign corresponds to flows directed upward). The function K(p) de- 
scribes the influence of the constraint of the flow over the particles on the hydrodynamic 
force experienced by them while BK(p)Q represents the force per unit mass of particles of the 
bed (see [ii]). At a low Reynolds number a quasi-Stokes mode of flow is realized for an in- 
dividual particle, so that 8 = 9~/2a2; in the opposite case it is most convenient to treat 
8 and K(O) as empirical quantities. In this connection, we note that in the case under con- 
sideration the velocity of flow over a particle has the order mA, and with intense vibrations 
it can be large, so that the Reynolds number will not be small even for fine particles. In 
the steady state (i.e.~ without vibrations) the gas filters through the bed with a filtration 
velocity qo, where 

po = (K,  + Ks) ~ .  (2) 

We assume that this flow does not lead to fluidization of the bed in the usual sense; i.e., 
we impose the condition qo < g/SK. 

Here, as in [II], we use the vertical coordinate z connected with the vibrating grld. 
Then, from the obvious relation Q ='-Zb + q and from Eqs. (i) and (2), we obtain (here and 
below the dot denotes time differentiation) 

q = _ _ •  Q=qo____Zb • KI (3) 
I + •  Ks" 

Us ing (3 ) ,  we o b t a i n  a prob lem analogous to  t h a t  o f  [11]  f o r  the  d e t e r m i n a t i o n  o f  the  
height of tossing of the center of gravity of the bed: 

+ ~/~' = -- ~' + sin ~, ~ = ~ = 0 (~ = % = arcsin k'). ( 4 )  

Here we introduce the following dimensionless quantities: 

, "~ = cot, = ( I  d T x )  v ,  v = - - ,  
A 13K 

k ' =  g--[~Kqo = k - - k q ,  k =  g kq= qo 
�9 o~2A ogA ' v o  A " 

(5) 

As is easy to see, the formulation presented is correct if we neglect the effect of the small 
expansion of the bed on the trajectory of its center of gravity. 

Thus, the permeability of the grid and the presence of flow imposed from outside lead to 
the same mathematical problem as that first analyzed by Kroll [i]; however, the modified pa- 
rameters k' and ~' figure in it instead of the parameters k and 9 usually used. The solution 
of the problem (4) is well known and can be represented in the form 
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F i g .  2. Dependence  o f  t h e  q u a n t i t y  
B* at the moment of contact of the 
lower boundary of the bed with the 
grid on ~ with ~ = 0.I and different 
k ~ . 

~,~ ,~r 
sin x - -  - -  cos ~. - -  k'v' (~ - -  ~1) 1 q- v" 1 q- v" ( 6 )  

The c o n d i t i o n  o f  t h e  o n s e t  o f  v i b r o b o i l i n g  ( s e p a r a t i o n  o f  t h e  bed f rom t h e  g r i d )  i s  a l s o  ex -  
p r e s s e d  in the usual form: 

g - -  PKqo < o~ZA. (7)  

The maximum tossing height is reached at x = r,, where x, is understood to be the next 
root of the equation ~(x) = 0 after xx. In Fig. i r, and ~m = ~(~,) are presented as func- 
tions of v' for different k'. It is seen that an increase in ~ (in particular, a decrease in 
the hydraulic resistance of the grid at a fixed bed height or an increase in the height at a 
fixed Ku), as well as an increase in kq (i.e., actually an increase in the pressure below 
the grld), involves the rising of the bed above the grid and strongly increases the tossing 
height, which is in agreement with the data of numerous experiments. As ~ § = the quantities 
�9 , and ~m approach finite limits, which depend on k'. 

For the quantity ~ = (h- ho)/A, which characterizes the expansion of the bed during its 
flight, we have a problem entirely analogous to that of [Ii] : 

~ + ..._~o,v ~1= (11--~ • [~ , 'rl =~i = 0 ("r = 'r,). (8) 

This problem was analyzed in [II] in the particular case of ~ = 0. The coefficient ~ repre- 
sents the ratio of the hydrodynamic force acting on a particle at the boundary of the bed 
facing the oncoming gas flow to the force acting on a particle in the interior of the bed at 
the same filtration velocity. The solution of (8) is easily written in analytical form using 
Eq. (6), in the same way as was done in [ii]. It is not presented here in view of its cum- 
bersome nature. In concrete calculations it is evidently more convenient not to use the 
analytical equation for n but to integrate the problem (8), or even both problems (4) and 
(8) at once, numerically with values of the parameters from (5) which are of interest. 

The solution of (8) is greatly simplified in the limiting case of u << i, when for ~ we 
obtain the simple relations 

~ =  ~, ~ ~ . ,  (9) 
~(1 + •  

1--o" 
cr(1 -F- x) (~m--~) ,  x , ~ ' ~ x ' .  (10) 

Here T' is the next root after xx of the equation ~(~) -- n(x) = 0 determining the phase angle 
of the contact of the lower boundary of the bed with the grid. When T > T' the lower part of 
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Dependences of ~p* (a) and ~q* (b) on ~ with ~= 
0. I and different k'. 

the bed is in a densely packed state, with the boundary separating this part from the par- 
ticles in a suspended state moving rapidly upward with an increase in T, reaching the upper 
surface of the bed at T = T" determined from the equation ~(r) + ~(r) = 0. Exactly half of 
the bed is in the densely packed state at T = T2, where T2 is determined from the equation 
~(T) = 0. When the expansions of the bed are not too great ~" -- T' << T2 -- T,. The condi- 
tion for the realization of a mild mode of vibrofluidization has the form T" < T, + 2~ and 
imposes restrictions on the region of variation of the parameters corresponding to this mode. 
The boundary of the packed region, as well as the dependences of the phase angles T', T2, 
and T" on the parameters of the process, are easy to obtain, as in [Ii], on the basis of a 
study of the solutions of the problems for ~ and ~ presented above. 

In order to analyze the influence of the parameters ~ and kq on the vibrofluidization 
process it is sufficient here to study only the limiting case of ~ <<i, when Eqs. (9) and 
(I0) are valid. As is easy to see, the latter inequality can be satisfied for beds of suf- 
ficiently fine particles at not very high vibration frequencies. The results obtained with 
v << i are also valid in a qualitative respect in situations when this inequality is not satis- 
fied. Since ~ is a semiempirical parameter in need of experimental refinement, it is con- 
venient to consider the quantity 

~* (~) = ~ (I _~)I~ (~), (ii) 

which does not depend on ~ at all. The dependence of this quantity at r = T' on the parame- 
ter ~ with v = 0.i and different k' is illustrated in Fig. 2. It is seen that in the region 
of large %< the expanNion of the bed weakens monotonically with an increase in ~; this con- 
clusion already follows from the form of the curves for ~m in Fig. 1 and from Eq. (8). Sim- 
ilarly, it is easy to study the dependence of all the other quantities characterizing the 
vibrofluidization process (such as the pressure pulsations at the grid level) Onto 

The equations presented above were obtained with the expansion of the bed neglected, 
when we simply took e = eo in calculating the hydrodynamic force. Actually, during the flight 
phase we have 

I -- ~ -- p ~ 90(I --AN~%), (12) 

from which it is easy to find, for example, the time average of the porosity of the bed 

AP~ ~ ~qdT (13) 
<~> =8~247 2~ho 

(here and below we allow for the presumed smallness of T" -- ~' in comparison with the flight 
duration r2 -- T,). 

With expansion of the bed neglected, the pressure at its lower boundary is Po --K2qo = 
K,qo, as is easy to see from (I) and (2). This pressure can be calculated with allowance 
for expansion as follows. The relative velocity of gas filtration at the level of the bed 
which had the coordinate zo in the densely packed state is Q- (Zo - zb)h/ho, where the quan- 
tity Q is defined in (3). Therefore, the pressure gradient at this level is represented in 
the form (the uniformity of the expansion of the bed assumed here is taken into account) 
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~ q ,  Y = ~q/ (q ) .  

dp = ( z~ ) �9 (14) 
dz - -  p K (P) dt I~ Q ho 

The pressure at any level is easy to obtain by integrating (14) over dz from the upper 
boundary of the bed, where the pressure is equal to zero by convention, to the coordinate of 
the level using the equations presented above. It is seen, in particular, that the quantity 
(14) is nonuniform over the bed; i.e., with appreciable expansion of the bed the pressure 
profile in it differs from a linear profile. 

By integrating (14) over the entire height of the bed, allowing for its uniformity (so 
that the term proportional to h vanishes entirely in the integration), and using the defini- 
tions of ~ and n and Eqs. (2), (3), and (12) and the condition oh = poho = const of conser- 
vation of granular material, with the accuracy of terms of the first order with respect to 
the small relative expansion of the bed we obtained the following expression for the pres- 
sure at the lower boundary of the bed: 

p = 2 h o P o K ( p ) d ~ Q = K  ~ ! - -  ho , N =  P_&_o dK(p) (15) 

Averaging this quantity over a vibration period, we obtain the expression for the average 
pressure at the lower boundary: 

< P > = KNo ( 1 P ~  (16) 
90 

where we used Eq. (13) and introduced the time-averaged pressure drop, corresponding to the 
situation with qo = 0 and calculated earlier in [ii] in the particular case of ~ = 0: 

po dK(p) ) d~[jAeSp, = peN 
5p = ~ d9 p=p, ~ digOP" 

T= 

1 [ ~l'Bdx. ( 1 7 )  
~P'= 1 + •  ~ " 

Here we used the  d e f i n i t i o n s  of  the  parameters  in  (5) and (15). In  the  s imples t  case,  when 
<< 1, a f t e r  a s imple  c a l c u l a t i o n  we ob ta in  from (9) and (10) 

8p' --~6p*,~ 8p*= (1 + • (18) 

from which i t  i s  seen tha t  in  t h i s  case the  q u a n t i t y  ~p i s  always p o s i t i v e ;  i . e . ,  i t  co r r e -  
sponds to an average rarefaction below the bed. The dependence of the reduced pressure drop 
6p* on ~ with v = 0.I and different k' is shown in Fig. 3a. 

On the basis of (16) and (17) one can represent the tlme-averaged gas flow through the 
grid--bed system in the form 
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( q.> = Po - -  ( P > _~ qo + ~O + Sq, 

6qO=• (P)  Nqo, ~tq= P~ dt--g 6p'. 
Po u/rv K2 

(19) 

The term ~qO describes the increase in flow due to the pressure drop imposed from outside 
owing to the expansion of the bed in flight and the corresponding decrease in its average 
hydraulic resistance, while the term 6q characterizes the intensity of the pumping effect in 
the bed. With v << i we have approximately 

~, Ti 

5q o= (1 - -a )  N Aqo ~ N~ + (2~,~--~)d~ , 
2n(~ h o 1 -[- • 

(20) 
po N dig 1 - -  ~ 6q*, ~q* = "~ 

5q= ulev Ki 5q', 5 q ' -  ~ ( 1 +  • 

The dependence of 8q* on 4 with v = 0~ and different k' is shown in Fig. 3b. 

In the case when external flow qo is entirely absent the curves in Fig. 3 describe the 
average pressure drop and suction effect in an ordinary vibrofluidized bed. It is physically 
obvious that a decrease in the hydraulic resistance of the grid leads, on the one hand, to 
facilitation of the penetration of gas into the bed from the space below the grid, i.e., a 
decrease in ~p, and, on the other hand, to intensification of the tossing of the bed above 
the grid and to an increase in its expansion, i.e., to an increase in Sp. The competition 
of these opposing effects leads to the appearance of maxima in the curves of Fig. 3a. The 
additional gas flow ~q due to the vibrations of the bed also reaches a maximum at a certain 
value of the parmneter 4, which evidently depends on k and ~. This flow is reduced to zero, 
i.e., the pumping effect vanishes, not only with an impermeable grid (%= 0), which is ob- 
vious, but also for systems in which the hydraulic resistance of the bed is far higher than 
the resistance of the grid (4§ ~). This fact finds its natural explanation within the frame- 
work of the theory developed without the enlistment of artificial considerations of the type 
discussed in [12]. We note also that the results presented permit a detailed study of the 
dependence of 8p and 8q on the various dimensional parameters. For example, it is easy to 
see that in the case when the actual value of % lles to the left of the maxima in the curves 
of Fig. 3a, an increase in the bed height, leading to an increase in 4j causes an increase 
in the average pressure drop. At the same time, with higher h0, such that the corresponding 
value of % lies to the right of these maxima, an increase in the height of the bed leads to 
a decrease in the average pressure drop in it. Moreover, the latter at once makes it possible 
to explain the well-known disagreements in the opinions of various authors on the influence 
of the height of a vibrofluidized bed on the average pressure drop occurring in it. The de- 
pendence of the intensity of the pumping effect on the bed height has a similar nature. 

In the case when there is an external gas flow through a granular bed, i.e., the pres- 
sure below the grid is different from zero, the application of vibrations leads to a change 
in the effective hydraulic resistance of the system under consideration. The coefficient of 
resistance is easily determined from (2) and (19), to wit, 

K~p)= Po K,+K2 
( q } 1 @ 5q~ q- 5q/qo ( 2 1 )  

Thus, upon the application of vibrations the resistance to an ascendin~ gas flow (qo > 
0) decreases while the resistance to a descending flow increases when ~q > |~q~ I. As 6q = + 
~q § the quantity (21) approaches infinity; this corresponds to the fact that flow through 
the bed ceases entirely, even though the pressure drop is different from zero. In this case 
a change in the sign of K(P ) corresponds to a change in the direction of the gas flow. 

A situation when the pressure below the grid is assigned as independent of the applied 
vibrations was considered above for determinacy. In the general case one must assign some 
connection between the values of the pressure and the gas flow, the character of which is 
determined by the construction of the apparatus used. The limiting situation opposite to 
that considered corresponds to the assignment of the gas flow through the system; in the 
adopted notation this corresponds to the quantity <q) being fixed. 
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In this case qo represents a quantity formally determined from Eq. (19), with ~q being 
found in a way similar to what was done above. Then Eq. (2) for Po is valid as before. The 
corresponding coefficient of effective hydraulic resistance of the system has the form 

K~q)__ Po =(K~--}-K2)(!--6q/(q>)  (22) 
< q > 1 + 6q~ " 

which differs considerably from (21). However, the resistance of the system decreases or in- 
creases as a function of the direction of the gas flow imposed from outside, and under cer- 
tain conditions it can become negative in accordance with the experimental data in [2, 9, 
10]. 

Depending on the concrete values of the parameters, limiting situations are possible 
when one of the flows ~qO or ~q is far greater than the other. If ~q= >> ~q then the coef- 
ficient of variation 

K~ t') K~ q) 1 
%P -- Ki -b Kz = %q -- Kt + / ( 2  -- 1 -I- 6q~ (23) 

of the hydraulic resistance of the system due to the application of vibrations does not depend 
on the conditions under which the external gas flow is created. Conversely, in the case of 
~q >~ ~qO we have 

i 8q 
Xv= 1-66q/qo x q = l - - - - .  ' < q > (24) 

Consequently, the character of the variation in the resistance of the system upon the 
application of vibrations depends strongly on the experimental conditions, i.e., on the type 
of apparatus used, whichmust be taken into account in the treatment and interpretation of 
the data obtained. A comparison of the coefficients of variation of the resistance (24) is 
shown in Fig. 4. In principle there is no difficulty in numerical calculations of the depen- 
dence of these coefficients on the various physical and operating parameters. 

NOTATION 

A, amplitude of vibrations; a, particle radius; dr, particle density; g, acceleration 
of gravity; h, half-height of bed; K(p), function introduced into (i); K, and K2, coeffi- 
cients of hydraulic resistance of bed and grid, respectively; K~P) and K~q), coefficients of 
effective resistance of the system, defined in (19) and (20); k, inverse multiplicity of ac- 
celeration of vibrations; kq, parameter in (5); N, parameter in (12); p and Po, pressure 
above and below grid; ~p, time-averaged pressure drop in bed; Q, gas filtration velocity rel- 
ative to center of gravity of bed; q, gas flow through grid; ~q, gas flow due to pumping ef- 
fect; t, time; z, vertical coordinate, associated with the grid; B, reduced coefficient of 
resistance in (i); c, porosity; ~, relative expansion of bed; ~, ratio of hydraulic resistances of 
bed and grid; B, viscosity of gas; u, dimensionless frequency of vibrations; ~, dimensionless coordi- 
nate of center of gravityof the bed; p, bulk concentration of particles; a, coefficient of boundary 
decrease in resistance; T, dimensionless time (phase angle); m, angular frequency of vibrations; the 
subscript 0 pertains to the densely packed state of the bed and to parameters of the gas 
flow in the ansence of vibrations; the upper prime and asterisk denote reduced quantities of dif- 
ferent types; the angle brackets mean averaging over the vibration period. 
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THE SCALE EFFECT IN THE LAMINAR FLOW OF DILUTE SOLUTIONS 

OF POLYMERS IN TUBES 

S. A. Vlasov and V. N. Kalashnikov UDC 532.517.2:532.135 

This paper describes the variation of the viscosity of polyoxyethylene solutions 
as a function of tube diameter. We investigate the effect of molecular weight and 
concentration of the polymer on viscosity anomalies. 

I. Dilute solutions of some high-molecular-weight polymers have properties which make their ~ 
hydrodynamic behavior different from that of ordinary liquids. The most striking difference 
is found in turbulent flow, when the hydrodynamic friction of the polymer solutions is only 
a fraction of the friction of the solvent. This effect was discovered by Toms in connection 
with the flow of solutions of polymethylmethacrylate in monochlorobenzene [i]. The phenomenon 
of reduced turbulent friction resistance attracted the attention of many researchers, and a 
large number of studies on this subject have already been published. 

Subsequently Toms established an anomaly in the laminar flow of polymer solutions [2]. 
It was found that ~l the laminar flow of solutions in tubes the value of the viscosity de- 
pends on the tube diameter. Toms regarded this as proof of the existence of effective slip- 
page along the wall, to which Oldroyd [3] attributed the reduced-resistance effect. The scale 
anomalies discovered in this connection did not attract any special attention on the part of 
investigators. The only study worth mentioning is [4], the authors of which, in particular, 
noted difficulties in explaining the results on the basis of slippage along the wall. 

In the mid-1960s it was found that high-molecular-weight polymers such as polyhydroxy- 
ethylene and polyacrylamide were capable of reducing turbulent friction at solution concen- 
trations of a few parts per million. Unlike the liquid used in Toms' experiments, the vis- 
cosity of solutions at such concentrations differs by only a few percent from the viscosity 
of the solvent. Apparently this is why no more interest was shown in the anomalies of lami- 
nar viscosimetric flows. In investigations of the reduced resistance, researchers confined 
their attention to measurements of the viscosity of solutions using ordinary viscosimeter8 
with thin capillaries, assuming that dilute polymer solutions in laminar flow behave like 
Newtonian liquids. Even when differences were again observed in the values of the viscosity 
at different diameters of the measuring segments of the viscosimeters, no importance was at- 
tached to this fact, on the assumption of possible degradation of the solutions in thin tubes 
or of errors in measurement [5]. 

This disregard of the anomalies observed in viscosity measurements did not introduce any 
substantial distortion into the data on turbulent resistance but led to erroneous conclusions 
concerning the effect of polymer additives on the stability of circular Couette flow. In a 
number of published reports it was asserted that polymer additives increase the value of the 
critical Taylor number [6-10]. As was explained in [Ii], this conclusion was due to the fact 
that in determining the Taylor number, researchers used solution viscosity values measured 
by means of thin capillary viscosimeters. It was shown that if the viscosity values used are 
those obtained by means of viscosimeters with fairly large diameters in the measuring seg- 
ments, the critical values of the Taylor number for dilute polymer solutions coincide with 
those of Newtonian liquids. Thus, it became clear that the viscosimetric anomalies should 
no longer be ignored, since that might lead to further errors. 
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